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Abstract Climate impacts are now widely reported

from coastal marine systems, but less is known for the

open ocean. Here we review progress in understanding

impacts on large pelagic species presented at an

international workshop for the Climate Impacts on

Oceanic Top Predators programme, and discuss the

future with regard to the next phase of adaptation-

focused research. Recent highlights include a plan to

map the distribution of key species in the foodweb using

both acoustics and biochemical techniques, and devel-

opment of a new data sharing and access tool for fisheries

and associated data, including socio-economic informa-

tion. A common research focus in pelagic ecosystems is

on understanding climate variability and climate change

impacts on marine species, but a greater emphasis on

developing future scenarios and adaptation options is

needed. Workshop participants also concluded that

engagement with and provision of science support to

regional fisheries management organisations are critical

elements for ensuring successful uptake of research. This

uptake will be required for future management of

fisheries as global warming continues such that some

open ocean top predators can be sustainably harvested,

impacts on conservation-dependent species can be

avoided, and ecosystem function is not compromised.
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Background

Almost half of the surface of the earth is ocean that is

beyond national management and exclusive economic

zones (EEZ), and is considered by some to be wild and

untouched regions of the planet. Despite this remote-

ness, a range of impacts on these oceans and their

ecosystems have been documented (Halpern et al.

2008; Game et al. 2009), with impacts of fishing

considered to be the most important with regard to

changes in population size of exploited (e.g. tuna), and

bycatch (e.g. sharks seabirds, turtles) species (Stevens

et al. 2000; Sibert et al. 2006; Lewison and Crowder

2007; Juan-Jorde et al. 2011; Croxall et al. 2012).

Climate variability is a dominant driver of patterns of

distribution and abundance in these open ocean

species (Hollowed et al. 2001; Ekau et al. 2010), and

thus complicates population assessments for many

exploited species (Hobday and Evans 2013). Anthro-

pogenic climate change is now an additional challenge

for understanding and managing species on the high

seas (Rijnsdorp et al. 2009; Hazen et al. 2013).

To address the combined impacts of climate

variability and change on open ocean top predators,

the Climate Impacts on Oceanic Top Predators

(CLIOTOP) programme was initiated in 2004 as a

GLOBEC Regional Programme. The general objec-

tive of CLIOTOP is to organise a large-scale world-

wide comparative effort aimed at elucidating the key

processes involved in the impact of both climate

variability (at various scales) and fishing on the

structure and function of open ocean pelagic ecosys-

tems and their top predator species. The focal taxa

include tuna, billfish, sharks, and large iconic species

such as marine mammals, seabirds, turtles and whales.

The ultimate objective of CLIOTOP is to develop a

reliable predictive capability for the dynamics of top

predator populations and oceanic ecosystems that

combines both fishing and climate (i.e. environmental)

effects (Lehodey and Maury 2010).

The first phase of CLIOTOP under GLOBEC ran to

2009 and focused on the identification and modelling

of the major processes driving oceanic ecosystems and

their top predators (Lehodey and Maury 2010). The

second phase (2010–2014) under the IMBER Pro-

gramme continues that work, as well developing

scenarios for oceanic ecosystems under anthropogenic

and natural forcing in support of international gover-

nance. This work requires integrated research between

scientists involved in climate and ocean physics,

biogeochemistry, ecosystems, predators, fisheries,

markets, as well as the managers and policy makers

charged with operational open ocean governance

(Fig. 1). The research is organised under six open-

access working groups; (1) early life history, (2)

distribution, movement and physiology, (3) trophic

pathways, (4) socio-economic and governance, and (5)

synthesis and modelling. A sixth working group was

added in 2010 to address a data gap identified in

ecosystem models—the estimation of mid-trophic

level biomass.

The CLIOTOP scientific steering committee met in

Hobart, Australia in September 2012 to review recent

progress and discuss future research direction for

CLIOTOP beyond this second phase. Updates from

working group chairpersons provided a number of

recent highlights from all six working groups, includ-

ing synthesis publications, database and analytical tool

development, dedicated workshops, and conference

sessions and presentations.

Climate change impacts on large pelagic species

and ecosystems

Through the efforts of many scientists, the impacts of

climate change (global warming and ocean acidificat-

ion) on oceanic ecosystems and top predators are

being investigated. Novel tools, methods and analyses

have been critical in recent discoveries regarding the

early life history, movements, and trophic pathways of

open ocean predators, while new modelling

approaches are synthesising these findings, as illus-

trated in the following examples discussed by work-

shop participants.

Example 1: Early life history and climate

Recent work on the early life history stages of top

predators such as billfish and tuna has focused on

clarifying environmental attributes associated with

spawning locations (Richardson et al. 2009a, b;

Muhling et al. 2010; Alemany et al. 2010; Koched

et al. 2012; Reglero et al. 2012), resolution of the early

feeding habits (Catalán et al. 2007, 2011; Tanaka et al.

2008; Llopiz and Cowen 2008; Llopiz et al. 2010;

Reglero et al. 2011; Laiz-Carrión et al. 2013; Llopiz

2013), and drivers of early growth (Sponaugle et al.
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2010). A combination of physical and biological

oceanographic tools have been utilized to integrate

individual observations with mesoscale circulation

features, including tracking location of larval patches

with Lagrangian- satellite tracked drifters to guide bio-

physical sampling (Richardson et al. 2009b), and

detailed (daily) age and growth estimates from otoliths

extracted from individual larvae (Sponaugle et al.

2010). As a step towards improving resolution and

in situ sampling of the early life history stages of top

predators in combination with their prey (plankton)

field, a new imaging system (In situ ichthyoplankton

imaging system, ISIIS) has been developed for real-

time, very high resolution imaging of larval stages of

fishes and associated plankton (Cowen and Guigand

2008). This instrument can be used in rapid survey

work to identify newly spawned patches of larval fish

for more intensive bio-physical sampling. ISIIS is also

capable of evaluating plankton patchiness and size

structure, both of which are key elements in food web

models. Combining information on the spatio-tempo-

ral distribution of the early life history stages with

individual physiological responses is helping to define

key environmental requirements for spawning, growth

and early survival of top predators in light of

environmental responses to climate change (e.g.

Muhling et al. 2011).

Example 2: Climate and animal movements

Advances in telemetry techniques allowing the record-

ing of marine animal movements, behaviour and

Fig. 1 The structure of the

CLIOTOP programme (six

working groups) and

examples of the information

that must be integrated to

sustain fishing and

conservation of top

predators in the open sea

under climate change.

� IRD, P. Lopez 2010
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physiology and the immediate environment encoun-

tered by individuals as well as analyses methods and

tools are furthering our knowledge of these species

and the roles they play in open ocean ecosystems

(Costa et al. 2010; Estes et al. 2011). Fine-scale

information on the movements of individuals in three

dimensions are now possible (Yoda et al. 1999; Mitani

et al. 2010), data are able to be gathered on earlier life

stages than ever before (Shillinger et al. 2012), greater

numbers of individuals are able to be studied allowing

for investigation of population level parameters

(Block et al. 2011; Robinson et al. 2012; Hazen

et al. 2013) and oceanographic quality environmental

data allowing assessment of environmental features

dictating species distributions (Biuw et al. 2007; Costa

et al. 2010) are also providing in situ information on

ocean physical environments unable to be collected

using traditional ocean sampling tools (Charrassin

et al. 2008; Padman et al. 2010). Recent advances in

telemetry formats and sensors included are supporting

novel methods in determining position from archival

tags. Dead-reckoning allows for the collection of

temporally finely-resolved regular, sequential position

data which is continuous and therefore is not subject to

the same problems as point estimates of position

collected via alternative techniques (e.g. geolocation,

satellite resolved positions) (Wilson et al. 2007). The

habitat requirements and movements of top predator

species must also be known in order to understand

their present interactions with the environment, and

their likely responses to climate change. For example,

studies of migration and behaviour in widely distrib-

uted shark species have revealed their associations

with different oceanic provinces as well as proximate

cues that appear to influence their movements; while

also highlighting the fact that migratory periods may

be characterized by immunity to proximate stimuli

(Weng et al. 2008, 2012). Understanding of the

energetics of open ocean species has also been

advanced with accelerometry studies elucidating

behavioural options and revealing costs of migration,

foraging and other activities (Gleiss et al. 2011;

Wilson et al. 2011; Wilson et al. 2012; Halsey et al.

2011).

Example 3: Trophic pathways

Work on trophic pathways of top predators in and

between oceans, has used a range of traditional and

biochemical approaches such as stomach contents

(Young et al. 2010a), stable isotopes (Olson et al.

2010; Newsome et al. 2010) and signature fatty acids

(Young et al. 2010b; Iverson et al. 2007). These

studies have shown the potential of using latitude as a

proxy for temperature in understanding the effects of

climate change on top predator food webs. A major

task has been to combine data from different oceans

into one database so that comparative analyses can be

made (e.g. Dambacher et al. 2010). Development of

novel statistical analyses, such as classification trees

(Kuhnert et al. 2012) now enable the identification of

important physical and biological variables associated

with shifts in diet from one region to another. The

development of these new tools and databases will

enable a more unified approach to understanding how

pelagic ecosystems respond to the changes associated

with climate induced changes in the worlds’ oceans.

Example 4: Model syntheses

Climate and associated changes such as ocean acid-

ification and de-oxygenation are modifying oceanic

ecosystems at an alarming speed, leading to large scale

changes in their structure and function and potentially

pushing them towards radically different states with

no analogues in the past. In this context, modelling is

of prime importance to infer future changes and

identify potential tipping points. For that purpose, the

CLIOTOP Synthesis & Modelling Working Group

(WG4) is developing integrated socio-ecological

models spanning climate, biogeochemistry, ecosys-

tems, top predators populations, fisheries and global

markets. These models allow study of feedbacks

which are responsible for nonlinearities that can lead

to bifurcations in system trajectories. A large part of

this work is undertaken in the framework of the

French-funded MACROES project. Specifically, the

IPSL-CM5 Earth System Model which includes the

OGCM NEMO and the ocean biogeochemistry model

PISCES, is being used to provide environmental

(temperature, currents, light, oxygen) and trophic

(two sizes of phytoplankton, two sizes of zooplankton,

two sizes of particulate organic matter) forcing to the

upper trophic level model APECOSM, both for

historical reanalysis of historical conditions and for

climate change projections. APECOSM (Maury

et al. 2007a, b; Maury 2010) represents the 3D dyna-

mics of size-structured generic pelagic communities
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(epipelagic, mesopelagic and migratory) in the global

ocean. It represents size-structured trophic interaction,

physiology and behaviour (3D movements, schooling)

and includes the effects of life-history diversity in

communities. Focal species (at present tropical tunas)

are represented in more detail, including detailed

individual bioenergetics based on dynamic energy

budget theory (Kooijman, 2000), mechanistic descrip-

tion of movements (Faugeras and Maury 2007) and

patterns of fishing effort. A simplified version of the

focal species component is used for parameter

estimation purposes using tuna fisheries data under a

likelihood framework (Faugeras and Maury 2005;

Dueri et al. 2012a, b).

It is clear from these examples that climate impacts

will need to be considered when managing the sustain-

ability and conservation of both exploited and unex-

ploited open ocean species. However, global processes

driving ecosystems and fisheries are currently not

considered by Regional Fisheries Management Organ-

isations (RFMOs) which provide governance for fish-

eries targeting these migratory and multi-jurisdictional

species (Maury et al. in review). There is an urgent need

to integrate a wider science perspective in support of

regional and global governance, yet considerable

barriers exist (Miller et al. 2010). With regard to non-

exploited species, fisheries and non-fisheries interac-

tions are also largely managed in an ad-hoc manner

(Ban et al. 2013). In addressing these challenges, the

CLIOTOP socio-economic working group is active in

developing integrated ocean management solutions

that build on existing institutions (Maury et al. in

review)—it is apparent that a greater consideration of

socio-economic factors and governance arrangements

in management of open ocean predators is needed.

Advances in understanding depend

on comprehensive data access

Collection of oceanic top predator data is difficult and

expensive. One of the important elements of the

CLIOTOP programme has been collection of new data

and collation and provision of existing data to underpin

future research efforts, and to make that data freely

available. For example, working group 6 (MAAS) has

developed a road map for predicting ecosystem

dynamics in the open ocean based on acoustic methods

(Handegard et al. 2012). Fundamental to this objective

is the collection, processing and distribution of acous-

tic data. An example of this data handling is the

development of the Australian Integrated Marine

Observing System (IMOS) bio-acoustic programme

based on ships of opportunity (www.imos.org, Kloser

et al. 2009). This is complemented with the develop-

ment of international metadata and calibration proto-

cols through the ICES Fisheries Acoustic, Science and

Technology working group (WGFAST). Currently the

IMOS bioacoustics team monitors six fishing and three

research vessels from the Indian, Southern and Pacific

Oceans. Data are collected, calibrated, processed with

data freely accessible from www.imos.org. Develop-

ments of data interpretation and uptake into ecosystem

models will be facilitated with open access to these

data.

The synthesis and modelling working group also

reported significant progress on one of the CLIOTOP

synthesis phase activities: development of a Model

and Data Sharing Tool (MDST) aimed at gathering

datasets of different variables and model outputs at the

global scale. Developed as part of the French IRD

MACROES project, this web-hosted database is being

populated with a range of fishery, diet and isotope and

coupled model data. It will allow connectivity with

existing national databases, provided international

standards are respected. This online database has

already been used in CLIOTOP publications (e.g.

Reygondeau et al. 2012) and will soon become

publicly available. This resource will be of significant

value to the oceanic science community, as it will

facilitate integrative analyses and support develop-

ment of ecosystem models capable of investigating the

influences of climate variability across multiple spatial

and temporal scales.

Gaps in the research agenda for open ocean

systems

The efforts to date from the oceanic research commu-

nity, including CLIOTOP-affiliated projects, have

shown that climate variability is a strong driver of

pattern in a range of pelagic predators, and evidence

for the impacts of climate change is gathering for a

range of species in open ocean foodwebs, as described

earlier. While there is much still to be done in these

areas, meeting participants agreed that two key

elements; adaptation, and engagement with end-users
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of the science, were currently under-represented in

research being carried out under CLIOTOP and

require additional focus.

Moving from impacts to adaptation

In some countries the climate change research empha-

sis is shifting from a focus on the understanding of the

impacts of climate change, to developing adaptation

options (Bell et al. 2011; Frusher et al. in review).

Adaptation will be necessary given the climate changes

projected and the likely shortfall in global mitigation

efforts to reduce global warming. Thus, there is an

imperative for adaptation-focused research in a range

of environmentally-exposed industries, including fish-

eries and agriculture. Both incremental and transfor-

mative adaptation will have a role to play (Stokes and

Howden 2010; Bell et al. 2011) and participatory

approaches will see stakeholder information and needs

recognized in adaptation planning. The meeting par-

ticipants agreed that developing adaptation options for

open ocean management bodies should be a major

focus of CLIOTOP beyond the current phase of

research ending in 2014. Initial efforts to document

both impacts and adaptation options for oceanic

resources in the Pacific Ocean are already underway

(Bell et al. 2011), and offer a model for other regions.

These adaptation options can reduce vulnerability in

both biological systems (e.g. improving breeding

success in fishery-threatened seabirds via predator

control at breeding colonies—Wilcox and Donlan

2007), and the human system (e.g. improving the range

of alternative livelihoods for resource-dependent com-

munities—Marshall 2010; Bell et al. 2011).

Adaptation options for resource-based industries

include a wide range of approaches for the biological

and human components of the socio-ecological system,

including genetic engineering for warm-climate crops

(Stokes and Howden 2010), and habitat enhancement

for coastal species (Koehn et al. 2011). In the open sea,

species may adapt autonomously, but directed biolog-

ical adaptation strategies may be more difficult given

the highly migratory nature of many species. Novel

approaches will need to be considered and while some

may initially be considered outlandish (e.g. Bowman

2012), thinking outside the box may be required to

generate future options. Scenarios of climate change

impacts on bycatch species such as seabirds, turtles and

marine mammals should also be taken into

consideration when considering conservation strategies

and bycatch rules. Adaptation for the human part of the

system is also likely, and may include modified fishing

strategies and gears, spatial management strategies, and

resource sharing between countries differentially

impacted by the changing distribution of marine species

(Bell et al. 2011). In developing adaptation options,

information about thresholds and timeframes for action

will be crucial for decision makers, while efforts to

identify and avoid mal-adaptation and ‘‘short term win-

long term loss’’ options should be paramount (Grafton

2010; Bell et al. 2011).

Development of tools such as end-to-end or whole

of ecosystem models (Lehodey et al. 2003; Fulton

2010; Maury 2010) will continue to be an important

element to identify current effects of climate variabil-

ity and future impacts of climate change. Equipping

these models with a wider range of physical, social and

economic sub-models will provide more comprehen-

sive investigations of scenarios impacting oceanic

systems and allow great confidence in the outcomes

(Fulton 2010; Miller et al. 2010). Generation and

evaluation of scenarios with such models will also

allow for the testing and evaluation of management

options thereby providing guidance for future adapta-

tion options. Limitations in observations available on

suitable temporal and spatial time scales able to be

included in, fit to, or used to force models however,

will remain for some time, and so alternatives, such as

qualitative models (e.g. Plagányi et al. 2011), must

also be considered when evaluating adaption options.

Engagement with decision-makers

In planning for improved connection to a range of end-

users of the science conducted under the CLIOTOP

programme, the group focused on development of a

range of communication elements that can be used to

summarize scientific output. Examples discussed

included the usual synthesis publications, information

sheets, and web-pages. However, these one-way

approaches assume that people will come looking for

information which may not be the case with some

time-poor stakeholders. Successful update of science

is maximised with two-way engagement, and the

group emphasized the importance of presenting

CLIOTOP science at end user meetings, such as

RFMO fora. Connection between other programmes

that also work on climate and top ocean predators (e.g.
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IMBER-ESSAS, PICES) should also be improved,

and the opportunity to establish such links will be

pursued at a workshop planned for late-2013. Without

better engagement with end-users and decision mak-

ers, action around climate change will continue to lag.

This engagement and collaboration is difficult for

researchers focusing on waters beyond EEZs. In con-

sidering the CLIOTOP goals, and the success of the

collaborative approach, the group recognized that while

the open sea might be considered a global commons,

national programmes are still the dominant form of

funding opportunity, which has limited several of the

global comparative approaches proposed under CLIO-

TOP. Similarly, most scientists are primarily employed

and funded to work at the national or sub-national scale,

rather than internationally. Understanding these condi-

tions is relevant with respect to realistic goal-setting by

groups such as CLIOTOP in seeking to advance

understanding of areas beyond the EEZs. For example,

workshops continue to be the main fora through which

CLIOTOP’s international community progresses work-

ing group objectives, although considerable follow-up is

typically required before analysis is completed, and

funding for this follow-up often means progress is slow.

Despite the challenges, in the last year for example, three

different dedicated or conference-attached workshops at

the Far Seas Fisheries Labs (Shimizu Japan, Sept 2011),

Ocean Sciences Meeting (Utah, February 2012), and the

Planet Under Pressure Conference (London, March

2012), have brought together scientists addressing a

range of the CLIOTOP goals. Given the challenges in

funding open ocean research, it will be important to

continue to find opportunities to bring scientists together

to discuss multi-disciplinary approaches to regional and

global problems and to forge improved links with other

related programmes, both under the IMBER framework

and elsewhere. Given the challenges in funding open

ocean research, it is important to forge improved links

with other related programmes, both in the IMBER

framework and elsewhere, in order to best engage and

inform decision-makers.

Collaboration to support impacts and adaptation

research

An increasingly sophisticated science is documenting

the impacts of climate change on the physical structure

of the worlds’ oceans. This advance has been facili-

tated by satellite-based observations of surface ocean

features and increasingly by in situ technologies such

as ARGO floats capable of collecting spatially com-

prehensive data that provide for the documentation of

changes in the vertical structure of oceans around the

world (e.g. Durack et al. 2012). Further, the ability of

animals to record oceanographic data is not only

providing physical oceanographic data, but data on the

characteristics of the animals habitat requirements that

can be used to predict climate impacts (Biuw et al.

2007; Charrassin et al. 2008; Costa et al. 2010).

However, comparable data collection programmes

capable of examining changes in the biology of these

oceans are lagging, particularly in relation to top

predator species (Nicol et al. 2013), although the

recently concluded Census of Marine Life TOPP

programme was a standout in this regard (e.g. Block

et al. 2011). Regional data exist for many of these open

ocean species but few examples exist that attempt to

bring these disparate studies together. By developing

the tools and global databases discussed earlier,

progress in both understanding of climate impacts

and development and testing of adaptation options can

be made more rapidly than through individual local

studies.

The impacts of climate change on open ocean

systems will extend beyond biology and could lead to

considerable social and economic disruption for small

island nations and large industrial fleets. There may be

unforseen impacts on threatened and endangered

species which may impact on non-extractive ocean

uses, such as tourism. As yet, much work remains to

determine likely future scenarios and adaptation

options for both biology and human elements of the

open ocean system. Multi-disciplinary approaches

comparing different ocean regions are likely to lead to

faster progress, and the meeting strongly endorsed the

view that the study of pelagic species, ecosystems, and

human uses must be a part of planned international

initiatives, such as Future Earth (http://www.icsu.org/

future-earth). Minimising future climate impacts and

developing adaptation options for 50 % of the surface

of the planet is critical if future generations are to enjoy

all the benefits provided by the open sea. Action is

needed now because the management measures needed

to confer increased resilience to oceanic systems can

take many years to be fully effective.
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